Inteligencia Artificial Aplicada con técnicas de Procesamiento de Lenguaje Natural y Machine Learning en el campo de la salud.
Palabras clave:
Aprendizaje Supervisado, Conversación Textual, Inteligencia Artificial, Machine Learning, Modelos de Clasificación, Procesamiento de Lenguaje NaturalSinopsis
La Inteligencia Artificial (IA), el Procesamiento del Lenguaje Natural (NLP) y el Aprendizaje Automático (ML) han jugado un papel crucial en la lucha contra la pandemia de Covid-19, proporcionando herramientas tecnológicas valiosas para el diagnóstico, seguimiento y control de la enfermedad, implementándose soluciones con IA para mitigar sus efectos. Se propone el diseño de un modelo de ML aplicando técnicas NLP en el preprocesamiento de texto para poder evaluar la eficacia del análisis de datos en conversaciones de personas contagiadas del coronavirus SARS-CoV-2. Se recopiló información de redes sociales como Twitter y Facebook, y encuestas a contagiados de Covid-19 en la Zona 8 de la provincia del Guayas. Con estos datos, se entrenó un sistema de clasificación textual utilizando los algoritmos de Soporte de Máquina Vectorial y Random Forest. El estudio resultó en una precisión del 96% en ambos modelos, demostrando su viabilidad para la creación e implementación de clasificadores de texto. Se logró mejorar el rendimiento del modelo, reduciendo las categorías con más de 200 ocurrencias, lo que resultó en una precisión más elevada sin diferencias significativas entre ambos modelos. Por último, se desarrolló un sitio web capaz de clasificar correctamente los síntomas y recomendaciones comentadas por los pacientes.
Citas
Agüero, V., Martin, J., Huarcaya, S., & Gloria, J. (2021). Machine Learning en la mejora del proceso de operaciones comerciales en la empresa Redondos, Lima - 2020. Universidad César Vallejo.
Aguilar, D., & Camargo, J. (2021). Sistema inteligente basado en redes neuronales, máquina de soporte vectorial y random forest para la predicción de deserción de clientes en microcréditos de bancos [Universidad Nacional Mayor de San Marcos]. http://cybertesis.unmsm.edu.pe/bitstream/handle/20.500.12672/16390/Aguilar_vd.pdf?sequence=1&isAllowed=y
Aiken, J. M., Aiken, C., & Cotton, F. (2018). A python library for teaching computation to seismology students. Seismological Research Letters, 89(3). https://doi.org/10.1785/0220170246
Andrés Pérez, F. (2019). El enfoque probabilístico en Inteligencia Artificial. www.seguridadinternacional.es
Arango, C., & Osorio, C. (2021). Aislamiento social obligatorio: un análisis de sentimientos mediante machine learning. https://doi.org/10.14349/sumneg/2021.V12.N26.A1
Ariza-López, F. J., Rodríguez-Avi, J., & Alba-Fernández, V. (2018). CONTROL ESTRICTO DE MATRICES DE CONFUSIÓN POR MEDIO DE DISTRIBUCIONES MULTINOMIALES. GeoFocus Revista Internacional de Ciencia y Tecnología de La Información Geográfica. https://doi.org/10.21138/gf.591
Avila-Tomás, J. F., Mayer-Pujadas, M. A., & Quesada-Varela, V. J. (2020). Artificial intelligence and its applications in medicine I: introductory background to AI and robotics. Atencion Primaria, 52(10), 778–784. https://doi.org/10.1016/j.aprim.2020.04.013
Ayoub, J., Yang, X. J., & Zhou, F. (2021). Combat COVID-19 infodemic using explainable natural language processing models. Information Processing and Management, 58(4). https://doi.org/10.1016/j.ipm.2021.102569
Bandana, R. (2018). Sentiment analysis of movie reviews using heterogeneous features. 2018 2nd International Conference on Electronics, Materials Engineering and Nano-Technology, IEMENTech 2018. https://doi.org/10.1109/IEMENTECH.2018.8465346
Bao, W., Lianju, N., & Yue, K. (2019). Integration of unsupervised and supervised machine learning algorithms for credit risk assessment. Expert Systems with Applications, 128. https://doi.org/10.1016/j.eswa.2019.02.033
Barrionuevo, C., Ierache, J. S., & Sattolo, I. I. (2020). Reconocimiento de emociones a través de expresiones faciales con el empleo de aprendizaje supervisado aplicando regresión logística. XXVI Congreso Argentino de Ciencias de La Computación (CACIC), 491–500. http://sedici.unlp.edu.ar/handle/10915/114089
Bi, Q., Goodman, K. E., Kaminsky, J., & Lessler, J. (2019). Practice of Epidemiology What is Machine Learning? A Primer for the Epidemiologist. Oxford University Press on Behalf of the Johns Hopkins Bloomberg School of Public Health. https://doi.org/10.1093/aje/kwz189
Biehler, R., & Fleischer, Y. (2021). Introducing students to machine learning with decision trees using CODAP and Jupyter Notebooks. https://doi.org/10.1111/test.12279
Bilheux, J.-C., Bilheux, H., Lin, J., Lumsden, I., & ZhangOak, Y. (2019). Neutron imaging analysis using jupyter Python notebook. https://doi.org/10.1088/2399-6528/ab3bea
Bisong, E. (2019). Introduction to Scikit-learn. Building Machine Learning and Deep Learning Models on Google Cloud Platform, 215–229. https://doi.org/10.1007/978-1-4842-4470-8_18
Borkan, D., Dixon, L., Sorensen, J., Thain, N., & Vasserman, L. (2019). Nuanced metrics for measuring unintended bias with real data for text classification. The Web Conference 2019 - Companion of the World Wide Web Conference, WWW 2019. https://doi.org/10.1145/3308560.3317593
Botchkarev, A. (2019). A new typology design of performance metrics to measure errors in machine learning regression algorithms. Interdisciplinary Journal of Information, Knowledge, and Management, 14. https://doi.org/10.28945/4184
Bouabdallaoui, Y., Lafhaj, Z., Yim, P., Ducoulombier, L., & Bennadji, B. (2020). Natural language processing model for managing maintenance requests in buildings. Buildings, 10(9). https://doi.org/10.3390/BUILDINGS10090160
Cabutto, T. A., Heeney, S. P., Ault, S. v., Mao, G., & Wang, J. (2018). An overview of the Julia programming language. ACM International Conference Proceeding Series, 87–91. https://doi.org/10.1145/3277104.3277119
Camacho Valladares, A. (2020). Aprendizaje auto supervisado para reconocimiento de objetos [Universidad Autónoma de Madrid]. https://repositorio.uam.es/bitstream/handle/10486/692807/camacho_valladares_alejandro_tfg.pdf?sequence=1
Canino, A. (2019). Deconstructing Google Dataset Search. Public Services Quarterly, 15(3). https://doi.org/10.1080/15228959.2019.1621793
Cedeno-Moreno, D., & Vargas, M. (2020). Aprendizaje automático aplicado al análisis de sentimientos. I+D Tecnológico, 16(2). https://doi.org/10.33412/idt.v16.2.2833
Celi-Parraga, R. J., Varela-Tapia, E. A., Acosta-Guzmán, I. L., & Montaño-Pulzara, N. R. (2021). Técnicas de procesamiento de lenguaje natural en la inteligencia artificial conversacional textual. AlfaPublicaciones, 3(4.1). https://doi.org/10.33262/ap.v3i4.1.123
Cepeda, E. (2018). Estadística Matemática.
Cervantes, J., Garcia-Lamont, F., Rodríguez-Mazahua, L., & Lopez, A. (2020). A comprehensive survey on support vector machine classification: Applications, challenges and trends. Neurocomputing. https://doi.org/10.1016/j.neucom.2019.10.118
Cevallos, H. V., Romero, H. C., Unda, S. B., Cevallos, V., Romero, C., & Barrezueta, &. (2020). APPLICATION OF AUTOMATIC LEARNING ALGORITHMS TO CLASSIFY THE FERTILITY OF A BANANA SOIL. Revista Conrado, 15–19.
Chiu, K.-L., Alexander, R., Farrow, H., Chen, J., Giorgi, M., Vargas Sepúlveda, M., Alexander, N., & Kolt, T. (2021). Detecting Hate Speech with GPT-3 *. https://github.com/kelichiu/GPT3-hate-speech-detection.
Cho, Y. S., Sharpe, S., & Smith, H. (2018). Stylometry in the Modern Era: Coreference and Voice for Authorship Attribution. https://github.com/ssharpe42/AuthorStyle
Choi, R. Y., Coyner, A. S., Kalpathy-Cramer, J., Chiang, M. F., & Peter Campbell, J. (2020). Introduction to machine learning, neural networks, and deep learning. Translational Vision Science and Technology, 9(2). https://doi.org/10.1167/tvst.9.2.14
Chowdhary, K. R. (2020). Fundamentals of artificial intelligence. In Fundamentals of Artificial Intelligence. Springer India. https://doi.org/10.1007/978-81-322-3972-7
Ciotti, M., Ciccozzi, M., Terrinoni, A., Jiang, W. C., Wang, C. bin, & Bernardini, S. (2020). The COVID-19 pandemic. Critical Reviews in Clinical Laboratory Sciences, 57, 365–388. https://doi.org/10.1080/10408363.2020.1783198
Colomo Magaña, E., Sánchez Rivas, E., Ruiz Palmero, J., & Sánchez Rodríguez, J. (2020). La tecnología como eje del cambio metodológico. In Umaeditorial.
Cuero César. (2020). COVID-NIVEL-MUNDIAL. Publicación de La Acádemia Panameña de Medicina y Cirugia , 1–2. https://doi.org/http://dx.doi.org/10.37980/im.journal.rmdp.2020872
David, J., & Cortés, N. (2020). IMPLEMENTACIÓN DE UNA APLICACIÓN WEB CON SERVICIO DE CHATBOT CON INTELIGENCIA ARTIFICIAL QUE PERMITA LA AUTOGESTIÓN DE CUENTAS POR PAGAR DE LOS PROVEEDORES DE LA UNIVERSIDAD AUTÓNOMA DE BUCARAMANGA.
Delgado López, S. (2021). Procesamiento de Lenguaje Natural sobre textos antiguos. Universidad de La Laguna.
DeYoung, J., Jain, S., Rajani, N. F., Lehman, E., Xiong, C., Socher, R., & Wallace, B. C. (2020). ERASER: A Benchmark to Evaluate Rationalized NLP Models. https://doi.org/10.18653/v1/2020.acl-main.408
Diaz Morales, A., Fonseca Gómez, L., & González Veloza, F. (2020). Caracterización por árboles de decisión para datos categóricos: diagnóstico de virus respiratorios en aves Characterization by decision trees for categorical data: diagnosis of respiratory viruses in birds.
Diaz, M. (2021). Escuela de posgrado. 0–1.
Dordevic, T., & Stojkovic, S. (2020). Syntax Analysis of Serbian Language using Context-free Grammars. 2020 55th International Scientific Conference on Information, Communication and Energy Systems and Technologies, ICEST 2020 - Proceedings, 50–53. https://doi.org/10.1109/ICEST49890.2020.9232872
Eisenstein, J. (2018). Introduction to Natural Language Processing. https://cseweb.ucsd.edu//~nnakashole/teaching/eisenstein-nov18.pdf
Escobar Ariana. (2019). ANÁLISIS DEL USO DEL PROCESAMIENTO DEL LENGUAJE NATURAL.
Espinosa-Zúñiga, J. J. (2020). Aplicación de metodología CRISP-DM para segmentación geográfica de una base de datos pública. Ingeniería, Investigación y Tecnología, 21(1), 1–13. https://doi.org/10.22201/FI.25940732E.2020.21N1.008
Espinoza Freire, E. E. (2018). La hipótesis en la investigación . MENDIVE, 16(1).
Etikala, V. (2021). Extracting decision model components from natural language text for automated business decision modelling. CEUR Workshop Proceedings, 2956.
Falcón, V., Pertile, V., & Ponce, B. (2019). La encuesta como instrumento de recolección de datos sociales: Resultados diagnostico para la intervención en el Barrio Paloma de la Paz (La Olla) - ciudad de Corrientes (2017-2018). XXI Jornadas de Geografía de La UNLP, 3. http://www.memoria.fahce.unlp.edu.ar/trab_eventos/ev.13544/ev.13544.pdfInformaciónadicionalenwww.memoria.fahce.unlp.edu.ar
Fernández-Garza, L. E., & Marfil, A. (2020). Neurological aspects that should not be forgotten during the COVID-19 pandemic. InterAmerican Journal of Medicine and Health, 3. https://doi.org/10.31005/iajmh.v3i0.89
Fontanelli Espinoza, O., Mansilla Corona, R. L., & Miramontes Vidal, P. E. (2020). Distribuciones de probabilidad en las ciencias de la complejidad: una perspectiva contemporánea. INTERdisciplina, 8(22). https://doi.org/10.22201/ceiich.24485705e.2020.22.76416
Fuentes Marmolejo, M. D., & Medina Parra, W. D. (2020). Diseño De Un Modelo Predictivo-Asistencial De Pacientes Infectados Por Covid-19, Mediante Un Modelo Supervisado De Machine Learning Basado En Criterios De Derivación Hospitalaria O Ambulatoria. Universidad de Guayaquil.
Gallardo, A. O. (2018). Relación entre economía y algunos paradigmas de inteligencia artificial. TRASCENDER, CONTABILIDAD Y GESTIÓN, 7, 26–33. https://doi.org/10.36791/TCG.V0I7.10
Garduño Teliz, E., Albarrán Millán, D. F., & Damián Julián, F. (2019). Investigación evaluativa para la inclusión educativa. REVISTA CIENCIAS PEDAGÓGICAS E INNOVACIÓN, 7(2), 56–68. https://doi.org/10.26423/rcpi.v7i2.312
Gärtler, M., Khaydarov, V., Klöpper, B., & Urbas, L. (2021). The Machine Learning Life Cycle in Chemical Operations – Status and Open Challenges. In Chemie-Ingenieur-Technik (Vol. 93, Issue 12). https://doi.org/10.1002/cite.202100134
Georgescu, T. M. (2020). Natural language processing model for automatic analysis of cybersecurity-related documents. Symmetry, 12(3). https://doi.org/10.3390/sym12030354
Gillioz, A., Casas, J., Mugellini, E., & Khaled, O. A. (2020). Overview of the Transformer-based Models for NLP Tasks. Proceedings of the 2020 Federated Conference on Computer Science and Information Systems, FedCSIS 2020. https://doi.org/10.15439/2020F20
Giraldo Ossa, W., & Jaramillo Marín, V. (2021). Machine Learning para la estimación del riesgo de crédito en una cartera de consumo. 1–57. https://repository.eafit.edu.co/handle/10784/29589
González, G. (2020, March 2). Investigación diagnóstica: características, técnicas, tipos, ejemplos. https://www.lifeder.com/investigacion-diagnostica/
González, N. M. (2018). Infraestructura para la evaluación intrínseca de algoritmos de stemming (Noel Molina González).
González-Hernández, I. J., Simon-Marmolejo, I., Granillo-Macias, R., Santana-Robles, F., Rondero-Guerrero, C., & Soto-Campos, C. A. (2020). Simulación de la distribución uniforme generalizada. Ingenio y Conciencia Boletín Científico de La Escuela Superior Ciudad Sahagún, 7(13), 23–28. https://doi.org/10.29057/ESCS.V7I13.4931
Graf César. (2020). Tecnologías de información y comunicación (TICs).Primer paso para la implementación de TeleSalud y Telemedicina. Revista Paraguaya de Reumatología, 2–2.
Grattarola, D., & Alippi, C. (2021). Graph Neural Networks in TensorFlow and Keras with Spektral. IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE, 99. https://doi.org/10.1109/MCI.2020.3039072
Gudivada, V. N., & Arbabifard, K. (2018). Open-Source Libraries, Application Frameworks, and Workflow Systems for NLP. In Handbook of Statistics (Vol. 38, pp. 31–50). Elsevier B.V. https://doi.org/10.1016/bs.host.2018.07.007
Guerrero, S. (2020). Coronavirus in Ecuador: An opinion from the academia. Granja, 32(2), 124–130. https://doi.org/10.17163/lgr.n32.2020.10
Guevara, G., Verdesoto, A., & Castro, N. (2020). Metodologías de investigación educativa (descriptivas, experimentales, participativas, y de investigación-acción). RECIMUNDO, 4(3).
Gupta, R., & Jivani, A. G. (2018). Analyzing the stemming paradigm. Smart Innovation, Systems and Technologies, 84, 333–342. https://doi.org/10.1007/978-3-319-63645-0_37
Hagedorn, S., Kläbe, S., & Sattler, K.-U. (2021). Putting Pandas in a Box. 10–13. https://www.python.org/dev/peps/pep-0249/
Hamarashid, H. K., Saeed, S. A., & Rashid, T. A. (2021). Next word prediction based on the N-gram model for Kurdish Sorani and Kurmanji. Neural Computing and Applications, 33(9). https://doi.org/10.1007/s00521-020-05245-3
Hariyanti, T., Aida, S., & Kameda, H. (2019). Samawa Language Part of Speech Tagging with Probabilistic Approach: Comparison of Unigram, HMM and TnT Models. Journal of Physics: Conference Series, 1235(1). https://doi.org/10.1088/1742-6596/1235/1/012013
Haro Rivera, S., Zúñiga Lema, L., Meneses Freire, A., Vera Rojas, L., & Escudero Villa, A. (2018). MÉTODOS DE CLASIFICACIÓN EN MINERÍA DE DATOS METEOROLÓGICOS. Perfiles, 2(20). https://doi.org/10.47187/perf.v2i20.40
Haroon, M. M. (2018). Comparative Analysis of Stemming Algorithms for Web Text Mining. Modern Education and Computer Science, 9, 20–25. https://doi.org/10.5815/ijmecs.2018.09.03
Harris, C. R., Jarrod Millman, K., van der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M. H., Brett, M., Haldane, A., Fernández del Río, J., Wiebe, M., Peterson, P., … Oliphant, T. E. (2020). Array programming with NumPy. Nature, 585, 357. https://doi.org/10.1038/s41586-020-2649-2
Hickman, L., Thapa, S., Tay, L., Cao, M., & Srinivasan, P. (2022). Text Preprocessing for Text Mining in Organizational Research: Review and Recommendations. Organizational Research Methods, 25(1), 114–146. https://doi.org/10.1177/1094428120971683
Hidayat, A., Jamaluddin, D., Sa, D., & Adillah Maylawati, ". (2020). Data Analytics for Effectiveness Evaluation of Islamic Higher Education using K-Means Algorithm. International Journal of Advanced Science and Technology, 29(3), 4149–4161.
IBM. (2021). Reglas de asociación - Documentación de IBM. https://www.ibm.com/docs/es/spss-modeler/SaaS?topic=nodes-association-rules
Jet, A., & O, H. J. (2017). Supervised Machine Learning Algorithms: Classification and Comparison. International Journal of Computer Trends and Technology, 48. https://doi.org/10.14445/22312803/IJCTT-V48P126
Jimenez Flores, V. J., Jimenez Flores, O. J., Jimenez Flores, J. C., & Jimenez Castilla, J. U. (2020). ENTIDAD CONVERSACIONAL DE INTELIGENCIA ARTIFICIAL Y CALIDAD PERCIBIDA DEL SERVICIO DE ATENCIÓN A LOS ESTUDIANTES DE LA UNIVERSIDAD JOSÉ CARLOS MARIÁTEGUI FILIAL TACNA, 2018-II. REVISTA CIENCIA Y TECNOLOGÍA-Para El Desarrollo-UJCM. https://doi.org/http://dx.doi.org/10.37260/rctd.v1i2.30.g27
Joison A, N., Barcudi R, J., Majul E, A., Ruffino S, A., de Mateo Rey J, J., Joison A M., & Baiardi G. (2021). La inteligencia artificial en la educación médica y la predicción en salud. Methodo. Investigación Aplicada a Las Ciencias Biológicas, 6(1). https://doi.org/10.22529/me.2021.6(1)07
Jusoh, S. (2018). A STUDY ON NLP APPLICATIONS AND AMBIGUITY PROBLEMS. Journal of Theoretical and Applied Information Technology, 31(6). www.jatit.org
Kalyoncu, F., Zeydan, E., Yigit, I. O., & Yildirim, A. (2018). A customer complaint analysis tool for mobile network operators. Proceedings of the 2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ASONAM 2018, January 2016, 609–612. https://doi.org/10.1109/ASONAM.2018.8508289
Kanakaraddi, S. G., & Nandyal, S. S. (2018). Survey on Parts of Speech Tagger Techniques. Proceedings of the 2018 International Conference on Current Trends towards Converging Technologies, ICCTCT 2018. https://doi.org/10.1109/ICCTCT.2018.8550884
Kanani, P., & Padole, M. (2019). Deep learning to detect skin cancer using google colab. International Journal of Engineering and Advanced Technology, 8(6). https://doi.org/10.35940/ijeat.F8587.088619
Kannan, R., & Vasanthi, V. (2019). Machine learning algorithms with ROC curve for predicting and diagnosing the heart disease. In SpringerBriefs in Applied Sciences and Technology. https://doi.org/10.1007/978-981-13-0059-2_8
Kaul, V., Enslin, S., & Gross, S. A. (2020). History of artificial intelligence in medicine. Gastrointestinal Endoscopy, 92(4), 807–812. https://doi.org/10.1016/J.GIE.2020.06.040
Khanna, R. C., Cicinelli, M. V., Gilbert, S. S., Honavar, S. G., & Murthy, G. V. S. (2020). COVID-19 pandemic: Lessons learned and future directions. Indian Journal of Ophthalmology, 68(5), 703–710. https://doi.org/10.4103/ijo.IJO_843_20
Khyani, D., Siddhartha, B., Niveditha, N. M., & Divya, B. M. (2020). An Interpretation of Lemmatization and Stemming in Natural Language Processing. 355–356. https://www.researchgate.net/publication/348306833
Krotov, V. (2018). Legality and Ethics of Web Scraping. https://www.researchgate.net/publication/324907302
Krotov, V., Johnson, L., & Silva, L. (2020). Tutorial: Legality and Ethics of Web Scraping. Communications of the Association for Information Systems, 47, pp-pp. https://doi.org/10.17705/1CAIS.04724
Lady M. Sangacha Tapia, Ricardo Javier Celi Párraga, Eleanor Varela Tapia, & Iván L. Acosta Guzmán. (2021). Modelos probabilísticos IA del procesamiento de lenguaje natural en conversaciones de personas contagiadas con Covid-19 Probabilistic AI models of natural language processing in conversations of people infected with Covid-19 Modelos probabilísticos de IA de processamento de linguagem natural em conversas de pessoas infectadas com Covid-19 Ciencias de la Salud Artículos de investigación. https://doi.org/10.23857/pc.v6i9.3099
Lagouvardos, S., Dolby, J., Grech, N., Antoniadis, A., & Smaragdakis, Y. (2020). Static Analysis of Shape in TensorFlow Programs. 15, 1–15. https://doi.org/10.4230/LIPIcs.ECOOP.2020.15
Landolt, S., Wambsganß, T., & Söllner, M. (2021). A Taxonomy for Deep Learning in Natural Language Processing. https://fasttext.cc
Lemenkova, P., Dursun, Z., Şeker, Ş., Kaya, A., Tanık, A., & Demir, V. (2019). Generic Mapping Tools and Matplotlib Package of Python for Geospatial Data Analysis in Marine Geology Polina LEMENKOVA Generic Mapping Tools and Matplotlib Package of Python for Geospatial Data Analysis in Marine Geology. International Journal of Environment and Geoinformatics (IJEGEO, 225–237. https://doi.org/10.30897/ijegeo.567343
Leopold, H., van der Aa, H., Offenberg, J., & Reijers, H. A. (2019). Using Hidden Markov Models for the accurate linguistic analysis of process model activity labels. Information Systems, 83. https://doi.org/10.1016/j.is.2019.02.005
Li, C. H., Wu, S. L., Liu, C. L., & Lee, H. Y. (2018). Spoken SQuAD: A study of mitigating the impact of speech recognition errors on listening comprehension. Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH, 2018-September. https://doi.org/10.21437/Interspeech.2018-1714
Li, Y., Is, S. L., Xu, Z., Cao, J., Chen’ L, Z., Hu, Y., Ghent, H., & Cheung, S.-C. (2021). Tr a n s Re g e x : Multi-modal Regular Expression Synthesis by Generate-and-Repair. 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE). https://doi.org/10.1109/IC
Lizcano-Jaramillo, P. A., Camacho-Cogollo, J. E., Lizcano-Jaramillo, P. A., & Camacho-Cogollo, J. E. (2019). Evaluación de Tecnologías en Salud: Un Enfoque Hospitalario para la Incorporación de Dispositivos Médicos. Revista Mexicana de Ingeniería Biomédica, 40(3), 1–8. https://doi.org/10.17488/RMIB.40.3.10
Lloret, E. J. A. (2019). Procesamiento del Lenguaje Natural (PLN) | Natural Language Processing (NLP).
Longbing Cao, U. F. (2017). Data Science : Challenges and Directions. Communications of the ACM, Vol. 60(No. 8), 59–68. http://delivery.acm.org/10.1145/3020000/3015456/p59-cao.pdf?ip=108.240.47.215&id=3015456&acc=OPEN&key=4D4702B0C3E38B35.4D4702B0C3E38B35.6978DEEF473775AF.6D218144511F3437&CFID=791759728&CFTOKEN=87852454&__acm__=1501772575_4b9f4ec3dac2f9c27d6decb5123e617d
Lopez, J. (2018). Web scraping. Academia Accelerating the World’s Research, 1–6. www.programacion.net
Machalek, D., Quah, T., & Powell, K. M. (2021). A novel implicit hybrid machine learning model and its application for reinforcement learning. Computers and Chemical Engineering, 155. https://doi.org/10.1016/j.compchemeng.2021.107496
Maguiña Vargas, C., Gastelo Acosta, R., & Tequen Bernilla, A. (2020, July 31). El nuevo Coronavirus y la pandemia del Covid-19. Revista Medica Herediana, 31(2), 125–131. https://doi.org/10.20453/rmh.v31i2.3776
Mahesh, B. (2018). Machine Learning Algorithms-A Review Machine Learning Algorithms-A Review View project Self Flowing Generator View project Batta Mahesh Independent Researcher Machine Learning Algorithms-A Review. International Journal of Science and Research. https://doi.org/10.21275/ART20203995
Martín Noguerol, T., Paulano-Godino, F., Martín-Valdivia, M. T., Menias, C. O., & Luna, A. (2019). Strengths, Weaknesses, Opportunities, and Threats Analysis of Artificial Intelligence and Machine Learning Applications in Radiology. Journal of the American College of Radiology, 16(9), 1239–1247. https://doi.org/10.1016/j.jacr.2019.05.047
Maxwell, A. E., Warner, T. A., & Fang, F. (2018). Implementation of machine-learning classification in remote sensing: An applied review. In International Journal of Remote Sensing (Vol. 39, Issue 9). https://doi.org/10.1080/01431161.2018.1433343
Maylawati, D. S., Priatna, T., Sugilar, H., & Ramdhani, M. A. (2020). Data science for digital culture improvement in higher education using K-means clustering and text analytics. International Journal of Electrical and Computer Engineering, 10(5), 4569–4580. https://doi.org/10.11591/IJECE.V10I5.PP4569-4580
Medina-Merino, R. F., & Ñique-Chacón, C. I. (2017). Bosques aleatorios como extensión de los árboles de clasificación con los programas R y Python. Interfases, 0(010), 165. https://doi.org/10.26439/interfases2017.n10.1775
Memon, S., Benazirabad Sindh, S., Ghulam Ali Mallah, P., KNMemon, P., Shaikh, A., KAasoori, S., & Ul Hussain Dehraj, F. (2020). Comparative Study of Truncating and Statistical Stemming Algorithms. IJACSA) International Journal of Advanced Computer Science and Applications, 11(2). www.ijacsa.thesai.org
Mendoza Olguín, G., Laureano De Jesús, Y., & Pérez de Celis Herrero, M. C. (2019). Métricas de similaridad y evaluación para sistemas de recomendación de filtrado colaborativo. Revista de Investigación En Tecnologías de La Información, 7(14), 224–240. https://doi.org/10.36825/riti.07.14.019
Migliorelli, L., Moccia, S., Pietrini, R., Carnielli, V. P., & Frontoni, E. (2020). The babyPose dataset. Data in Brief, 33. https://doi.org/10.1016/j.dib.2020.106329
Mihajlović, S., Kupusinac, A., Ivetić, D., & Berković, I. (2020). The Use of Python in the field of Artifical Intelligence.
Milo, T., & Somech, A. (2020). Automating Exploratory Data Analysis via Machine Learning: An Overview. Proceedings of the ACM SIGMOD International Conference on Management of Data, 2617–2622. https://doi.org/10.1145/3318464.3383126
Misra, S., & Li, H. (2020). Noninvasive fracture characterization based on the classification of sonic wave travel times. Machine Learning for Subsurface Characterization, 243–287. https://doi.org/10.1016/B978-0-12-817736-5.00009-0
Montes, R. H., Alejandra, C., Pinto, M., & Navarro Jiménez, S. G. (2019). Redes neuronales y árboles de decisión para la clasificación de objetos astronómicos Neural Networks and Decision Trees for the Classification of Astronomical Objects. Research in Computing Science, 148(7), 477–489.
Moreira, D., Cruz, I., Gonzalez, K., & Quirumbay, A. (2020). Análisis del Estado Actual de Procesamiento de Lenguaje Natural. Iberian Journal of Information Systems and Technologies.
Moreira, D., Cruz, I., Gonzalez, K., Quirumbay, A., Magallan, C., Guarda, T., Andrade, A., & Castillo, C. (2020). Análisis del Estado Actual de Procesamiento de Lenguaje Natural Analysis of the Current State of Natural Language Processing. 126–136.
Moreno-Pallares, M. G., Moreno-Pallares, R. R., & Mejia-Peñafiel, E. F. (2022). Entrenamiento de Redes Neuronales Artificiales con Aprendizaje No Training of Artificial Neural Networks with Unsupervised Learning in the quality control of the analysis Treinamento de Redes Neurais Artificiais com Aprendizado Não Supervisionado no contr. 7(5), 1584–1593. https://doi.org/10.23857/pc.v7i5.4048
Murdoch, W. J., Singh, C., Kumbier, K., Abbasi-Asl, R., & Yu, B. (2019). Interpretable machine learning: definitions, methods, and applications.
Murillo, C. & Ortiz, A. (2018). Máquinas de soporte vectorial para clasificación supervisada de imágenes en bases de datos espaciales. Revista Ibérica de Sistemas e Tecnologias de Informação Iberian Journal of Information Systems and Technologies Recebido/Submission:, June.
Murthy, K. N., & Scholar, P. (2020). WORD CLOUD IN PYTHON. Complexity International Journal (CIJ), 24. http://cij.org.in/Currentvolumeissue2401.aspx
Muthukrishnan, S., Krishnaswamy, H., Thanikodi, S., Sundaresan, D., & Venkatraman, V. (2020). Support vector machine for modelling and simulation of heat exchangers. Thermal Science, 24(1PartB), 499–503. https://doi.org/10.2298/TSCI190419398M
Nagpal, A., & Gabrani, G. (2019). Python for Data Analytics , Scientific and Technical Applications. 2019 Amity International Conference on Artificial Intelligence (AICAI), 140–145.
Nanjekye, J. (2017). Python 2 and 3 Compatibility. In Python 2 and 3 Compatibility. https://doi.org/10.1007/978-1-4842-2955-2
Narro-Cornelio, K. M., & Vásquez-Tirado, G. A. (2021). Características clínico-epidemiológicas en pacientes con diagnóstico covid-19. Red de salud Virú, marzo - mayo 2020. Revista Del Cuerpo Médico Del HNAAA, 13(4). https://doi.org/10.35434/rcmhnaaa.2020.134.772
Naser, M. Z., & Alavi, A. H. (2021). Error Metrics and Performance Fitness Indicators for Artificial Intelligence and Machine Learning in Engineering and Sciences. Architecture, Structures and Construction. https://doi.org/10.1007/s44150-021-00015-8
Nieto, N. T. E. (2018). TIPOS DE INVESTIGACIÓN. Universidad Santo Domingo de Guzmán, 1–4. https://scholar.google.com/citations?view_op=view_citation&hl=en&user=gskIDR8AAAAJ&pagesize=100&citation_for_view=gskIDR8AAAAJ:738O_yMBCRsC
Niño, J. S., & Mendoza, M. L. (2021). LA INVESTIGACIÓN CIENTÍFICA EN EL CONTEXTO ACADÉMICO.
Núñez Reiz, A., Armengol de la Hoz, M. A., & Sánchez García, M. (2019). Big Data Analysis and Machine Learning in Intensive Care Units. Medicina Intensiva, 43(7), 416–426. https://doi.org/10.1016/j.medin.2018.10.007
Núñez-Torres, F. (2021). DISEÑO Y DESARROLLO DE UN MODELO DE DESAMBIGUACIÓN LÉXICA AUTOMÁTICA PARA EL PROCESAMIENTO DEL LENGUAJE NATURAL.
Nuthakki, S., Neela, S., Gichoya, J. W., & Purkayastha, S. (2019). Natural language processing of MIMIC-III clinical notes for identifying diagnosis and procedures with neural networks.
Oa, U., & Dieser, M. P. (2020). TEOREMA CENTRAL DEL LÍMITE.
Ocaña-Fernández, Y., Valenzuela-Fernández, L. A., & Garro-Aburto, L. L. (2019). Inteligencia artificial y sus implicaciones en la educación superior. Propósitos y Representaciones, 7(2). https://doi.org/10.20511/pyr2019.v7n2.274
Ofer, D., Brandes, N., & Linial, M. (2021). The language of proteins: NLP, machine learning & protein sequences. Computational and Structural Biotechnology Journal, 19, 1750–1758. https://doi.org/10.1016/J.CSBJ.2021.03.022
Otter, D. W., Medina, J. R., & Kalita, J. K. (2021). A Survey of the Usages of Deep Learning for Natural Language Processing. IEEE Transactions on Neural Networks and Learning Systems, 32(2). https://doi.org/10.1109/TNNLS.2020.2979670
Palacio-Niño, J.-O., & Berzal, F. (2019). Evaluation Metrics for Unsupervised Learning Algorithms.
Palacios Cruz, M., Santos, E., Velázquez Cervantes, M. A., & León Juárez, M. (2021, January 1). COVID-19, a worldwide public health emergency. Revista Clinica Espanola, 221(1), 55–61. https://doi.org/10.1016/j.rce.2020.03.001
Palmer, A., & Jiménez, R. (2022). Cálculo de probabilidades en las distribuciones comunes en el análisis de datos.
Pulido-Rojano, A. D., Ballestas-Acosta, C., Del-Castillo-Herrera, K., Navarro-Rosales, M., Fuentes-Ávila, T., Pizarro-Rada, A., & Rodriguez-Ospino, Y. (2021). Simulación de un Sistema de Inventarios para la Determinación de Niveles de Reposición y de Servicios: Un caso de estudio. CICIC 2022 - Decima Segunda Conferencia Iberoamericana de Complejidad, Informatica y Cibernetica En El Contexto de the 13th International Multi-Conference on Complexity, Informatics, and Cybernetics, IMCIC 2022 - Memorias. https://doi.org/10.54808/CICIC2022.01.191
Quaranta, L., Calefato, F., & Lanubile, F. (2021). KGTorrent: A dataset of python jupyter notebooks from kaggle. Proceedings - 2021 IEEE/ACM 18th International Conference on Mining Software Repositories, MSR 2021. https://doi.org/10.1109/MSR52588.2021.00072
Rafay, A., Suleman, M., & Alim, A. (2020). Robust Review Rating Prediction Model based on Machine and Deep Learning: Yelp Dataset. 2020 International Conference on Emerging Trends in Smart Technologies, ICETST 2020. https://doi.org/10.1109/ICETST49965.2020.9080713
Rahate, P. M., & Chandak, M. B. (2019). Text normalization and its role in speech synthesis. International Journal of Engineering and Advanced Technology, 8(5 Special Issue 3), 115–122. https://doi.org/10.35940/ijeat.E1029.0785S319
Ramachandran, D., & Parvathi, R. (2019). Analysis of Twitter Specific Preprocessing Technique for Tweets. Procedia Computer Science, 165. https://doi.org/10.1016/j.procs.2020.01.083
Ray, S. (2019). A Quick Review of Machine Learning Algorithms. Proceedings of the International Conference on Machine Learning, Big Data, Cloud and Parallel Computing: Trends, Prespectives and Prospects, COMITCon 2019. https://doi.org/10.1109/COMITCon.2019.8862451
Reese, R. M. (2018). Natural language processing with Java : explore various approaches to organize and extract useful text from unstructured data using Java. https://books.google.com/books/about/Natural_Language_Processing_with_Java.html?hl=es&id=q7y4BwAAQBAJ
Robissout, D., Zaid, G., Colombier, B., Bossuet, L., & Habrard, A. (2021). Online Performance Evaluation of Deep Learning Networks for Profiled Side-Channel Analysis. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 12244 LNCS. https://doi.org/10.1007/978-3-030-68773-1_10
Rodrigo, A., & Bonino, R. (2019). Aprendo con NooJ: de la lingüística computacional a la enseñanza de la lengua. http://rephip.unr.edu.ar/xmlui/handle/2133/22285
Rodriguez, V. (2020). CLASIFICACIÓN DEL ESTADO DE RUPTURA DE ANEURISMAS CEREBRALES BASADA EN LA CARACTERIZACIÓN MORFOLÓGICA Y HEMODINÁMICA MEDIANTE MACHINE LEARNING [UNIVERSIDAD DE CHILE]. https://repositorio.uchile.cl/bitstream/handle/2250/175427/Clasificaci%c3%b3n-del-estado-de-ruptura-de-aneurismas-cerebrales-basada-en-la-caracterizaci%c3%b3n-morfologica-y.pdf?sequence=1&isAllowed=y
Rodríguez-Orejuela, A., Montes-Mora, C. L., & Osorio-Andrade, C. F. (2022). Sentimientos hacia la vacunación contra la covid-19: panorama colombiano en Twitter. Palabra Clave, 25(1). https://doi.org/10.5294/pacla.2022.25.1.4
Sahli, H. (2020). An Introduction to Machine Learning. In TORUS 1 - Toward an Open Resource Using Services: Cloud Computing for Environmental Data. https://doi.org/10.1002/9781119720492.ch7
Saing, R. H. (n.d.). Métodos y Técnicas Aplicadas a la Investigación en Atención Primaria de Salud . Autores : Héctor Bayarre Vea .
Sánchez-caro, J., & Sánchez, F. A. (2021). Vida e Inteligencia Artificial en el campo de la Salud. In RevistaeSalud. com.
Sancho Escrivá, J. V., Fanjul Peyró, C., de la Iglesia Vayá, M., Montell, J. A., & Escartí Fabra, M. J. (2020). Aplicación de la Inteligencia Artificial con Procesamiento del Lenguaje Natural para textos de investigación cualitativa en la relación médico-paciente con enfermedad mental mediante el uso de tecnologías móviles. Revista de Comunicación y Salud, 10(1), 19–41. https://doi.org/10.35669/rcys.2020.10(1).19-41
Sarica, S., & Luo, J. (2020). Stopwords in Technical Language Processing. https://doi.org/10.1371/journal.pone.0254937
Schonlau, M., & Zou, R. Y. (2020). The random forest algorithm for statistical learning. The Stata Journal, 20(1), 3–29. https://doi.org/10.1177/1536867X20909688
Schröer, C., Kruse, F., & Gómez, J. M. (2021). A systematic literature review on applying CRISP-DM process model. Procedia Computer Science, 181, 526–534. https://doi.org/10.1016/j.procs.2021.01.199
Scikit-learn. (2021). Ensemble methods — scikit-learn 1.0.2 documentation. https://scikit-learn.org/stable/modules/ensemble.html
Shelar, H., Kaur, G., Heda, N., & Agrawal, P. (2020). Named Entity Recognition Approaches and Their Comparison for Custom NER Model. Science and Technology Libraries, 39(3). https://doi.org/10.1080/0194262X.2020.1759479
Sheykhmousa, M., Mahdianpari, M., Ghanbari, H., Mohammadimanesh, F., Ghamisi, P., & Homayouni, S. (2020). Support Vector Machine Versus Random Forest for Remote Sensing Image Classification: A Meta-Analysis and Systematic Review. In IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing (Vol. 13). https://doi.org/10.1109/JSTARS.2020.3026724
Shrestha, N., & Nasoz, F. (2019). Deep Learning Sentiment Analysis of Amazon.Com Reviews and Ratings. International Journal on Soft Computing, Artificial Intelligence and Applications, 8(1). https://doi.org/10.5121/ijscai.2019.8101
Sinaga, K. P., & Yang, M.-S. (n.d.). Unsupervised K-Means Clustering Algorithm. https://doi.org/10.1109/ACCESS.2020.2988796
Sodhi, P., Awasthi, N., & Sharma, V. (2019). Introduction to Machine Learning and Its Basic Application in Python. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3323796
Sosa García, J. O. (2020). Atención de pacientes con COVID-19 en el consultorio médico. Revista CONAMED, 25(S1). https://doi.org/10.35366/97343
Spjuth, O., Frid, J., & Hellander, A. (2021). The machine learning life cycle and the cloud: implications for drug discovery. Expert Opinion on Drug Discovery, 16(9), 1071–1079. https://doi.org/10.1080/17460441.2021.1932812
Sukthanker, R., Poria, S., Cambria, E., & Thirunavukarasu, R. (2020). Anaphora and coreference resolution: A review. Information Fusion, 59(May 2019), 139–162. https://doi.org/10.1016/j.inffus.2020.01.010
Sumamo, J. S. (2018). DESIGNING A STEMMING ALGORITHM FOR KAMBAATA TEXT: A RULE BASED APPROACH.
Suresh, H., & Guttag, J. (2021). A Framework for Understanding Sources of Harm throughout the Machine Learning Life Cycle; A Framework for Understanding Sources of Harm throughout the Machine Learning Life Cycle. https://doi.org/10.1145/3465416.3483305
Torres, M. E. (2019). Derechos y desafíos de la Inteligencia Artificial. http://www.cyta.com.ar/biblioteca/bddoc/bdlibros/derechos_ia/derechos_ia_torres.htm
Tovar, M., Flores, G., Reyes-Ortiz, J. A., & Contreras, M. (2018). Validation of Semantic Relation of Synonymy in Domain Ontologies Using Lexico-Syntactic Patterns and Acronyms. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 10880 LNCS, 199–208. https://doi.org/10.1007/978-3-319-92198-3_20
Trilla, A. (2020). One world, one health: The novel coronavirus COVID-19 epidemic. Medicina Clinica, 154(5), 175–177. https://doi.org/10.1016/j.medcli.2020.02.002
Troncoso-Pantoja, C., & Amaya-Placencia, A. (2017). Interview: A practical guide for qualitative data collection in health research. Revista Facultad de Medicina, 65(2), 329–332. https://doi.org/10.15446/revfacmed.v65n2.60235
Ulčar, M., & Robnik-ˇ, M. (2021). Cross-lingual alignments of ELMo contextual embeddings. https://github.com/MatejUlcar/elmogan
Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Jarrod Millman, K., Mayorov, N., J Nelson, A. R., Jones, E., Kern, R., Larson, E., … van Mulbregt, P. (2020). SciPy 1.0: fundamental algorithms for scientific computing in Python. Nature Methods. https://doi.org/10.1038/s41592-019-0686-2
Visual Studio Code. (2021, October 27). Python and Flask Tutorial in Visual Studio Code. Flask Tutorial in Visual Studio Code. https://code.visualstudio.com/docs/python/tutorial-flask
Walkowiak, T., Datko, S., & Maciejewski, H. (2019). Bag-of-words, bag-of-topics and word-to-vec based subject classification of text documents in Polish - A comparative study. Advances in Intelligent Systems and Computing, 761. https://doi.org/10.1007/978-3-319-91446-6_49
Wang, M., & Hu, F. (2021). The application of nltk library for python natural language processing in corpus research. Theory and Practice in Language Studies, 11(9), 1041–1049. https://doi.org/10.17507/tpls.1109.09
Wang, S., Mao, X., & Yu, Y. (2018). An initial step towards organ transplantation based on github repository. IEEE Access, 6. https://doi.org/10.1109/ACCESS.2018.2872669
Warjri, S., Pakray, P., Lyngdoh, S., & Kumar Maji, A. (2018). Khasi Language as dominant Part-Of-Speech(POS) ascendant in NLP. 2018. https://ssrn.com/abstract=3354480
Wattanakriengkrai, S., Chinthanet, B., Hata, H., Kula, R. G., Treude, C., Guo, J., & Matsumoto, K. (2022). GitHub repositories with links to academic papers: Public access, traceability, and evolution. Journal of Systems and Software, 183. https://doi.org/10.1016/j.jss.2021.111117
Xiong, Z., Cui, Y., Liu, Z., Zhao, Y., Hu, M., & Hu, J. (2020). Evaluating explorative prediction power of machine learning algorithms for materials discovery using k-fold forward cross-validation. Computational Materials Science, 171. https://doi.org/10.1016/j.commatsci.2019.109203
Zaharia, M., Chen, A., Davidson, A., Ghodsi, A., Hong, S. A., Konwinski, A., Murching, S., Nykodym, T., Ogilvie, P., Parkhe, M., Xie, F., & Zumar, C. (2018). Accelerating the Machine Learning Lifecycle with MLflow. Bulletin of the IEEE Computer Society Technical Committee on Data Engineering, 39–45.
Zheng, X., Zhang, C., & Woodland, P. C. (2021). ADAPTING GPT, GPT-2 AND BERT LANGUAGE MODELS FOR SPEECH RECOGNITION.
Zhu, D., Cai, C., Yang, T., & Zhou, X. (2018). A machine learning approach for air quality prediction: Model regularization and optimization. Big Data and Cognitive Computing, 2(1). https://doi.org/10.3390/bdcc2010005
Сикулер, Д. В. (2021). RESOURCES PROVIDING DATA FOR MACHINE LEARNING AND TESTING ARTIFICIAL INTELLIGENCE TECHNOLOGIES. Информационные и Математические Технологии в Науке и Управлении, 2(22), 39–52. https://doi.org/10.38028/ESI.2021.22.2.004
Descargas
Próximamente
Licencia
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.